Measuring Bond Strength of Capsule to Fill Tube Assembly (CFTA) at Cryogenic Temperatures

Daniel Malone¹, Chantel Aracne-Ruddle¹, Parminderdeep Singh¹, Suhas Bhandarkar¹ ¹Lawrence Livermore National Laboratory (LLNL)

Motivation

- · Current method can measure glue bond strength, but method is limited
- · New adhesives and curing process may affect bond strength
- New method is designed to directly measure CFTAs for more accuracy
- · Tests are performed with appropriate configuration and temperature

Introduction

Extremely small CFTA bond presents challenges

- Small quantity of adhesive in a CFTA (~5pL)
- Fragile CFTA can fail during handling/test set-up at room temperature (293K)
- Cooling is of interest because targets are fielded at 19K
- Liquid nitrogen at 77K is representative of NIF shot temperature
- Difference in CTE of materials can produce mechanical stress while cooling

Adhesive bond of interest where fill tube is attached to capsule at fill hole

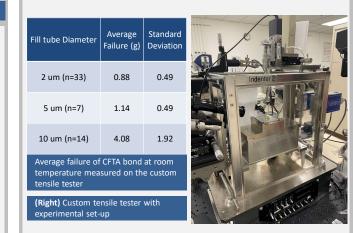
Adhesives can be qualified for bond strength using lap-shear testing

measured with lap shear method

coupon and pulled to failure

by force at failure/surface area

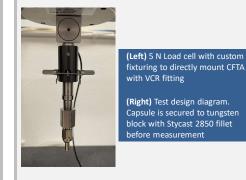
representative of CFTA materials


especially at cryogenic temperatures

- Strength of UV curable glues To load cell Glass slide adhered to aluminum Normalized bond strength obtained Can be submerged in liquid nitrogen Glass on aluminum is not Liquid Bond strength is dependent on size, Lap shear testing
- Great method to qualify adhesives Does not directly correlate to CFTA bond strength

Materials and Methods

Specialized system was set-up to measures pL bond assemblies


- System has a sensitive load cell and precision-controlled translation
- Tests performed at room temperature in a humidity-controlled chamber

•Tests performed at room temperature do not indicate the CFTA behavior at cryogenic conditions where significant thermal stresses arise

New method for measuring cryogenic bond strength of CFTAs

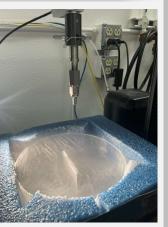
- Strength of CFTA at fielding conditions (19 K) is realistically represented at 77K as most of the contraction is complete
- System designed to be simple and effective
- Minimal handling
- Custom fixture made to attach CFTA directly to load cell

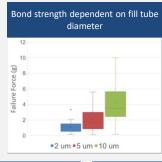
Results and Conclusions

First ever CFTA cryogenic measurements provide fresh insights

- Capsule temperature verified
- Two cure mechanisms investigated
- Two failure modes observed: tube pull-out and tube fracture
- Significant net strength despite thermal stresses from CTE mismatch of thermal contractions

(Right) Tensile tester with


nitrogen cooling


To load

cell

Liquid

experimental set-up during liquid

A new method to measure the bond strength of CFTAs has been developed. It has shown reproducible results at both room and cryogenic temperatures. This new method has provided insights for the CFTA assembly parameters including adhesive type and cure conditions.

LLNL-POST-867182